MOCK FINAL EXAM

PEYAM RYAN TABRIZIAN

Name: \qquad

Instructions: You have 3 hours to take this exam. It is meant as an opportunity for you to take a real-time practice final and to see which topics you should focus on before the actual final! Even though it counts for 0% of your grade, I will grade it and comment on it overnight, and you can pick up the graded exam tomorrow at noon in my office (830 Evans)

Note: Questions $14-17$ are a bit more challenging (although not impossible) than the rest! They are meant to be an extra challenge for people who finish early (and hence they are only worth 5 points each)

Note: Please check one of the following boxes:
\square I will pick up my exam tomorrow between noon and 5 pm , and I want comments on my exam (Peyam Tabrizian approves of this choice :))I will pick up my exam tomorrow between noon and 5 pm , but I don't want comments on my exam (I only want to know my score)
\square I will not pick up my exam tomorrow, just grade it and enter my score on bspace!

1		15
2		10
3		20
4		10
5		15
6		15
7		10
8		10
9		15
10		10
11		20
12		15
13		15
14		5
15		5
16		5
17		5
Total		200

[^0]1. (15 points, 3 points each) Evaluate the following integrals:
(a) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
(b) $\int_{-1}^{1} \frac{\sin \left(x^{3}\right)\left(x^{2}+7 x^{6}+1\right)}{\cos (x)+2} d x$
(c) $\int_{-2}^{0} \sqrt{4-x^{2}} d x$
(d) $\int \frac{\cos (x)}{\sin ^{2}(x)} d x$
(e) $\int_{1}^{2} \frac{\ln (x)}{x} d x$
2. (10 points)
(a) (8 points) Show that the function $f(x)=\cos (x)-x$ has at least one zero.
(b) (2 points) Using part (a), show that the function $g(x)=\sin (x)-\frac{x^{2}}{2}$ has at least one critical point.
3. (20 points) Sketch a graph of the function $f(x)=x \ln (x)-x$. Your work should include:

- Domain
- Intercepts
- Symmetry
- Asymptotes (no Slant asymptotes, though)
- Intervals of increase/decrease/local max/min
- Concavity and inflection points
(This page is left blank in case you need more space to do question 3.)

4. (10 points) Using the definition of the integral, evaluate $\int_{0}^{2}\left(x^{3}+x\right) d x$. You may use the facts that:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

5. (15 points, 5 points each) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{x}$
(c) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
6. (15 points) Find the area between the curves $4 x+y^{2}=12$ and $x=y$
7. (10 points) Suppose f is an odd function and is differentiable everywhere. Prove that, for every positive number b, there exists a number c in $(-b, b)$ such that $f^{\prime}(c)=\frac{f(b)}{b}$

1A/Practice Exams/Whale.jpg

A WHALE
is fine too
8. (10 points) Find the volume of the solid obtained by rotating the region bounded by $y=x, y=\sqrt{x}$ about $y=1$
9. (15 points) A lighthouse is located on a small island 3 km away from the nearest point P on a straight shoreline, and the angular velocity of the light is 8π radians per minute. How fast is the beam of light moving along the shoreline when it is 1 km away from P ?
10. (10 points, 5 points each) Find the derivatives of the following functions:
(a) $f(x)=\sin ^{-1}(x) \sqrt{1-x^{2}}$
(b) $f(x)=x^{\ln (x)}$
11. (20 points) Find the volume of the donut obtained by rotating the disk of center $(3,0)$ and radius 2 about the y-axis.
12. (15 points) Show that the equation of the tangent line to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{0}, y_{0}\right)$ is:

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

1A/Practice Exams/Snake.jpg

13. (15 points) Find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius r.

Note: I would like to remind you that questions $14-17$ are more challenging than the rest, but you can give them a try if you want to, they are not impossible to do!
14. (5 points) Solve the differential equation $T^{\prime}=T-5$.

Hint: Let $y=T-5$. What differential equation does y solve?
15. (5 points) If f is continuous on $[0,1]$, show that $\int_{0}^{1} f(x) d x$ is finite.
16. (5 points)
(a) Use l'Hopital's rule to show:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x)
$$

(b) Use (a) to answer the following question: If $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ with $f(0)=0$, does $f^{\prime \prime}(0)$ exist?
17. (5 points) If f is differentiable (except possibly at 0) and $\lim _{x \rightarrow \infty} f(x)=0$, is it true that $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$? Prove it or give an explicit counterexample!

You’re done!!!

$\underline{\text { Any comments about this exam? (too long? too hard?) }}$

1A/Practice Exams/Soccer.jpg

Hey, I just had an
awesome idea!

Since we're in the soccer
team, let's put the numbers
of our shirts in complex and
unsolved forms!
Can we use integrals,
like log(base 10) $10^{\wedge} 3$

summatories and limits too?
sure,
anything you
want
tor

[^0]: Date: Monday, May 9th, 2011.

