MOCK FINAL EXAM

PEYAM RYAN TABRIZIAN

Name:

Instructions: You have 3 hours to take this exam. It is meant as an opportunity for you
to take a real-time practice final and to see which topics you should focus on before the
actual final! Even though it counts for 0% of your grade, I will grade it and comment on it
overnight, and you can pick up the graded exam tomorrow at noon in my office (830 Evans)

Note: Questions 14 — 17 are a bit more challenging (although not impossible) than the
rest! They are meant to be an extra challenge for people who finish early (and hence they
are only worth 5 points each)

Note: Please check one of the following boxes:

1 I will pick up my exam tomorrow between noon and 5 pm, and I want comments
on my exam (Peyam Tabrizian approves of this choice :) )

7 I will pick up my exam tomorrow between noon and 5 pm, but I don’t want com-
ments on my exam (I only want to know my score)

7 I will not pick up my exam tomorrow, just grade it and enter my score on bspace!

1 15
2 10
3 20
4 10
5 15
6 15
7 10
8 10
9 15
10 10
11 20
12 15
13 15
14 5
15 5
16 5
17 5
Total 200

Date: Monday, May 9th, 2011.
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1. (15 points, 3 points each) Evaluate the following integrals:

1 X
@ fy 72

1 sin(a®)(2247254+1)
(b) ffl cos(x)+2 dx

©) f_02 V4 — z2dx

(d) f cos(x) dx

sin?(z)
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2. (10 points)
(a) (8 points) Show that the function f(z) = cos(x) — « has at least one zero.

(b) (2 points) Using part (a), show that the function g(z) = sin(z) — 7“2—2 has at
least one critical point.
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3. (20 points) Sketch a graph of the function f(x) = xIn(z) — 2. Your work should
include:
- Domain
- Intercepts
- Symmetry
Asymptotes (no Slant asymptotes, though)
- Intervals of increase/decrease/local max/min
- Concavity and inflection points
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(This page is left blank in case you need more space to do question 3.)
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4. (10 points) Using the definition of the integral, evaluate f02 (1:3 + a:) dz. You may
use the facts that:

il n+1) iZQ n(n+1)(2n +1) ZS n+1)

- ; 6
=1 =1
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5. (15 points, 5 points each) Evaluate the following limits:

(a) lim,_,o+ v/xsin (%)

(b) limy oo YEH

(©) limyoe (1+2)"
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6. (15 points) Find the area between the curves 4z + y? = 12 and z = y
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7. (10 points) Suppose f is an odd function and is differentiable everywhere. Prove
that, for every positive number b, there exists a number ¢ in (—b, b) such that

f'(e) =1
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8. (10 points) Find the volume of the solid obtained by rotating the region bounded
by y =,y =+/z abouty =1
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9. (15 points) A lighthouse is located on a small island 3 km away from the nearest
point P on a straight shoreline, and the angular velocity of the light is 87 radians
per minute. How fast is the beam of light moving along the shoreline when it is 1
km away from P?
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10. (10 points, 5 points each) Find the derivatives of the following functions:

(@) f(z) =sin"*(z)v1 — 22

(b) f(z)=a"®
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11. (20 points) Find the volume of the donut obtained by rotating the disk of center
(3,0) and radius 2 about the y—axis.



12. (15 points) Show that the equation of the tangent line to the ellipse ‘Z—z +
at (zo, yo) is:
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13. (15 points) Find the dimensions of the rectangle of largest area that can be in-
scribed in a circle of radius r.
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Note: I would like to remind you that questions 14 — 17 are more challenging
than the rest, but you can give them a try if you want to, they are not impossible to
do!

14. (5 points) Solve the differential equation 77 = T — 5.

Hint: Let y = T — 5. What differential equation does y solve?
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15. (5 points) If f is continuous on [0, 1], show that fol f(z)dz is finite.
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16. (5 points)
(a) Use I’Hopital’s rule to show:

) z+h)—2f(x x—h ”
lim fla+h) ‘2(2)+f( ):f ()

h—0

(b) Use (a) to answer the following question: If f(xz) = x?sin(1) with f(0) = 0,
does f"(0) exist?
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17. (5 points) If f is differentiable (except possibly at 0) and lim,_, o, f(z) =0,
is it true that lim,_, o, f'(x) = 0? Prove it or give an explicit counterexample!

21
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You’re done!!!

Any comments about this exam? (too long? too hard?)
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